2,995 research outputs found

    Fast computation of radar cross-section by fast multipole method in conjunction with lifting wavelet-like transform

    Get PDF
    The fast multipole method (FMM) in conjunction with the lifting wavelet-like transform scheme is proposed for the scattering analysis of differently shaped three-dimensional perfectly electrical conducting objects. As a flexible and efficient matrix compression technique, the proposed method can sparsify the aggregation matrix and disaggregation matrix in real time with compression ratio about 30%. The computational complexity and choice of proper wavelet are also discussed. Numerical simulation and complexity analysis have shown that the proposed method can speed up the aggregation and disaggregation steps of the FMM with lower memory requirements. © 2010 The Institution of Engineering and Technology.postprin

    Adaptive frequency sweep analysis for electromagnetic problems using the Thiele interpolating continued fractions

    Get PDF
    A direct rational approximation method based on Thiele interpolating continued fractions theory is proposed for fast frequency sweep analysis of electromagnetic problems. And an adaptive algorithm is also formed. Compared with the conventional rational approximation method, the proposed method can get a rational approximation directly without a great number of matrix inverse computations and doesn't need to allocate much memory for high derivatives of the dense impedance matrix. Meanwhile, the computation of surface currents by continued fractions can be sped up as compared with the traditional rational approximation. Numerical simulations for broad band scattering analysis of different shaped objects are discussed to shown the effectiveness of the present method. © 2010 IEEE.published_or_final_versionThe 2nd International Conference on Education Technology and Computer (ICETC 2010), Shanghai, China, 22-24 June 2010. In Proceedings of 2nd ICETC, 2010, v. 5, p. 126-12

    Geometry of reduced density matrices for symmetry-protected topological phases

    Full text link
    © 2016 American Physical Society. In this paper, we study the geometry of reduced density matrices for states with symmetry-protected topological (SPT) order. We observe ruled surface structures on the boundary of the convex set of low-dimensional projections of the reduced density matrices. In order to signal the SPT order using ruled surfaces, it is important that we add a symmetry-breaking term to the boundary of the system - no ruled surface emerges in systems without a boundary or when we add a symmetry-breaking term representing a thermodynamic quantity. Although the ruled surfaces only appear in the thermodynamic limit where the ground-state degeneracy is exact, we analyze the precision of our numerical algorithm and show that a finite-system calculation suffices to reveal the ruled surface structures

    Effect of swirl on premixed flame response at high forcing amplitudes

    Get PDF
    The response of a lean premixed flame subjected to acoustic perturbations is a complex phenomenon that depends highly on the type of flame and the operating conditions. Swirl introduces additional complexities due to the azimuthal component of the flow. In this work, a bluff body stabilised burner is studied under non-swirling and highly swirling conditions by placing a removable axial swirl upstream of the burner. The influence of swirl is assessed in terms of the flame describing function which is the ratio of heat release rate fluctuations response to incoming velocity oscillations and the spatial flame dynamics at high forcing amplitudes. The effect of flame interaction with the wall on the flame response is also explored by considering an enclosure with a larger diameter. It is found that swirl can affect the non-linear characteristics of the flame at medium frequencies (Strouhal numbers around unity) by altering the flame roll-up mechanisms. This is related to the variation of the local swirl number in space and time. For Strouhal numbers that are considerably lower than unity, the effect of swirl is small due to the high convective wavelengths. The size of the enclosure can also change the flame response characteristics, specifically for large forcing frequencies. With a small enclosure, where the flame interacts with the wall, the flame break-up is more significant and the vortex formation is interrupted. This does not happen when the enclosure is enlarged and it can affect the non-linear behaviour of the flame

    Allelopathy of root exudates from different resistant eggplants to Verticillium dahliae and the identification of allelochemicals

    Get PDF
    Three eggplant cultivars were inoculated with Verticillium dahliae Kleb. to assess their resistance to Verticillium wilt. Solanum tor was resistant, “Liyuanziqie” was tolerant, and “Xi’anlvqie” susceptible. The disease incidence and disease index of Verticillium wilt and the amount of V. dahliae in rhizospheric soil, variation of microbial composition, the allelopathy of root exudates to mycelium growth of V. dahliae and the chemical substances of root exudates from eggplant cultivars with different resistance to Verticillium wilt were investigated in this experiment. The results showed that the root exudates of resistant type could not only affect the growth and development of V. dahliae, but also influence V. dahliae indirectly through regulating soil microbial community composition. This may be one of the reasons for the increase of disease resistance. However, the susceptible type exhibited an opposite trend. It was inferred that the resistant type contained some particular components, such as  acohd, amide, pyranoid, fluorene, while the susceptible one comprised more types of components, that is, ketone, phenol, ester and phenolic acid.Key words: Allelopathy, allelochemical, root exudates, eggplant, Verticillium dahliae, Verticillium wilt, microbial composition
    • …
    corecore